发明 与深度学习方法相结合的多焦图像中目标分割方法 【特价】 仅包申请日之后年费
计算机视觉 图像分类 深度学习 目标检测 1人
G06V10/26 G06V10/56 G06V10/44 G06V10/42 G06V10/46 G06V10/764 G06V10/766 G06T7/33
摘要:本发明公开了与深度学习方法相结合的多焦图像中目标分割方法,先对多焦图像进行配准;再基于目标的颜色与轮廓进行粗分割得到一张只包含单个目标的局部图像并基于目标中心所在位置与所属图像形成目标的定位标签;提出两种评价尺度,分别为目标清晰度判断模块与目标需求性判断模块;综合清晰度判断模块与需求性判断模块的分数得到目标的分割价值系数;最后针对具有相同定位标签的目标,比较其分割价值系数,将具有分割价值的目标放入语义细分割模块来获取多焦图像中所有清晰需求的非重复目标,以解决单独使用传统方法中所存在的分割粗糙的问题和单独使用深度学习语义分割方法中存在的效率低下、效果差等问题。这样便兼顾了分割的效果与效率。